3^-2x=(1/81)

Simple and best practice solution for 3^-2x=(1/81) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^-2x=(1/81) equation:



3^-2x=(1/81)
We move all terms to the left:
3^-2x-((1/81))=0
We add all the numbers together, and all the variables
-2x+3^-((+1/81))=0
We add all the numbers together, and all the variables
-2x-((+1/81))=0
We multiply all the terms by the denominator
-2x*81))-((+1=0
Wy multiply elements
-162x^2+1=0
a = -162; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-162)·1
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*-162}=\frac{0-18\sqrt{2}}{-324} =-\frac{18\sqrt{2}}{-324} =-\frac{\sqrt{2}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*-162}=\frac{0+18\sqrt{2}}{-324} =\frac{18\sqrt{2}}{-324} =\frac{\sqrt{2}}{-18} $

See similar equations:

| 8x–1+85=180 | | -2(6x-9)+7=-12x+25 | | 9/4b+3/8b-1=46.875 | | 4(-3a+2)=-12a-10 | | 10x-156=x4-6 | | x10-156=x4-6 | | (b-6)/(b+6)=0 | | X+10=c-4 | | -18=5÷2x+12 | | t^2-2t-40=0 | | 7x-3(2x+5)=13 | | 7x-3(2x+5)=1/ | | 5t^2-2t-40=0 | | 7+7n=5n+7 | | -5x+7=-7x-5 | | -3y-32=6y=13 | | |x+3|+4=5 | | 3+3x=-4x+73 | | 2x+4=12+7x+1 | | |2-3x|+6=20 | | n/18=10 | | 2(x-12)-3=23x-90 | | 5(3y-18)+3y=30 | | 100-4u/3=5u/4+6 | | 4(y+5)-20=10 | | 2(k²-3k+2)=0 | | 2x+8=-4x-5 | | 6x-5=x=17 | | x/38=-16+28 | | 5y2+18=63 | | 9=-5v+3(v-3) | | b-8.25=-18.5 |

Equations solver categories